Tumor and Stem Cell Biology Pirfenidone Inhibits Pancreatic Cancer Desmoplasia by Regulating Stellate Cells

نویسندگان

  • Shingo Kozono
  • Kenoki Ohuchida
  • Daiki Eguchi
  • Naoki Ikenaga
  • Kenji Fujiwara
  • Lin Cui
  • Masao Tanaka
چکیده

Pancreatic stellate cells (PSC), which are implicated in desmoplasia in pancreatic cancer, enhance the malignancy of cancer cells and confer resistance to established treatments. We investigated whether the antifibrotic agent pirfenidone can suppress desmoplasia and exert antitumor effects against pancreatic cancer. Primary PSCs were established from pancreatic cancer tissue obtained during surgery. In vitro, pirfenidone inhibited the proliferation, invasiveness, and migration of PSCs in a dose-dependent manner. Although supernatants of untreated PSCs increased the proliferation, invasiveness, and migration of pancreatic cancer cells (PCC), supernatants of pirfenidone-treated PSCs decreased these effects. Exposure to PCC supernatant increased the production of platelet-derived growth factor-A, hepatic growth factor, collagen type I, fibronectin, and periostin in PSCs, which was significantly reduced by pirfenidone. Mice were subcutaneously implanted with PCCs (SUIT-2 cells) and PSCs into the right flank and PCCs alone into the left flank. Oral administration of pirfenidone to these mice significantly reduced tumor growth of co-implanted PCCs and PSCs, but not of PCCs alone. Pirfenidone also decreased the proliferation of PSCs and the deposition of collagen type I and periostin in tumors. In mice with orthotopic tumors consisting of PCCs co-implanted with PSCs, pirfenidone suppressed tumor growth, reduced the number of peritoneal disseminated nodules, and reduced the incidence of liver metastasis. Pirfenidone in combination with gemcitabine more effectively suppressed orthotopic tumor growth compared with pirfenidone or gemcitabine alone. In conclusion, our findings indicate that pirfenidone is a promising antitumor agent for pancreatic cancer, owing to its suppression of desmoplasia through regulating PSCs. Cancer Res; 73(7); 2345–56. 2013 AACR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pirfenidone inhibits pancreatic cancer desmoplasia by regulating stellate cells.

Pancreatic stellate cells (PSC), which are implicated in desmoplasia in pancreatic cancer, enhance the malignancy of cancer cells and confer resistance to established treatments. We investigated whether the antifibrotic agent pirfenidone can suppress desmoplasia and exert antitumor effects against pancreatic cancer. Primary PSCs were established from pancreatic cancer tissue obtained during sur...

متن کامل

Characterization and use of HapT1-derived homologous tumors as a preclinical model to evaluate therapeutic efficacy of drugs against pancreatic tumor desmoplasia

Desmoplasia in human pancreatic cancer (PC) promotes cancer progression and hinders effective drug delivery. The objectives of this study were to characterize a homologous orthotopic model of PC in Syrian golden hamster and investigate the effect of anti-fibrotic (pirfenidone), antioxidant (N-acetyl cysteine, NAC) and anti-addiction (disulfiram, DSF) drugs on desmoplasia and tumor growth in thi...

متن کامل

Apoptosis induction and proliferation inhibition by silibinin encapsulated in nanoparticles in MIA PaCa-2 cancer cells and deregulation of some miRNAs

Objective(s): Silibinin, as an herbal compound, has anti-cancer activity. Because of low solubility of silibinin in water and body fluids, it was encapsulated in polymersome nanoparticles and its effects were evaluated on pancreatic cancer cells and cancer stem cells.Materials and Methods: MIA PaCa-2 pancreatic cancer cells were treated ...

متن کامل

STAT3 as a Key Factor in Tumor Microenvironment and Cancer Stem Cell

Background Recent studies revealed that tumor-associated macrophages (TAMs) play a decisive role in the regulation of tumor progression by manipulating tumor oncogenesis, angiogenesis and immune functions within tumor microenvironments. Signal transducer and activator of transcription 3 (STAT3), which is a point of convergence for numerous oncogenic signalling pathways, is constitutively activ...

متن کامل

Long non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway

Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013